direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C42⋊C3, C42⋊3C6, C23.4A4, (C2×C42)⋊C3, C22.1(C2×A4), SmallGroup(96,68)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C42 — C42⋊C3 — C2×C42⋊C3 |
C42 — C2×C42⋊C3 |
Generators and relations for C2×C42⋊C3
G = < a,b,c,d | a2=b4=c4=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, dcd-1=b-1c2 >
Character table of C2×C42⋊C3
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | |
size | 1 | 1 | 3 | 3 | 16 | 16 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | linear of order 6 |
ρ7 | 3 | -3 | -3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ8 | 3 | 3 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ9 | 3 | 3 | -1 | -1 | 0 | 0 | -1-2i | 1 | -1+2i | 1 | -1-2i | 1 | 1 | -1+2i | 0 | 0 | complex lifted from C42⋊C3 |
ρ10 | 3 | 3 | -1 | -1 | 0 | 0 | 1 | -1-2i | 1 | -1+2i | 1 | -1+2i | -1-2i | 1 | 0 | 0 | complex lifted from C42⋊C3 |
ρ11 | 3 | 3 | -1 | -1 | 0 | 0 | 1 | -1+2i | 1 | -1-2i | 1 | -1-2i | -1+2i | 1 | 0 | 0 | complex lifted from C42⋊C3 |
ρ12 | 3 | -3 | 1 | -1 | 0 | 0 | -1+2i | 1 | -1-2i | 1 | 1-2i | -1 | -1 | 1+2i | 0 | 0 | complex faithful |
ρ13 | 3 | -3 | 1 | -1 | 0 | 0 | 1 | -1+2i | 1 | -1-2i | -1 | 1+2i | 1-2i | -1 | 0 | 0 | complex faithful |
ρ14 | 3 | -3 | 1 | -1 | 0 | 0 | -1-2i | 1 | -1+2i | 1 | 1+2i | -1 | -1 | 1-2i | 0 | 0 | complex faithful |
ρ15 | 3 | -3 | 1 | -1 | 0 | 0 | 1 | -1-2i | 1 | -1+2i | -1 | 1-2i | 1+2i | -1 | 0 | 0 | complex faithful |
ρ16 | 3 | 3 | -1 | -1 | 0 | 0 | -1+2i | 1 | -1-2i | 1 | -1+2i | 1 | 1 | -1-2i | 0 | 0 | complex lifted from C42⋊C3 |
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)
(5 6 7 8)(9 10 11 12)
(1 2 3 4)(5 7)(6 8)(9 10 11 12)
(1 7 12)(2 6 9)(3 5 10)(4 8 11)
G:=sub<Sym(12)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12), (5,6,7,8)(9,10,11,12), (1,2,3,4)(5,7)(6,8)(9,10,11,12), (1,7,12)(2,6,9)(3,5,10)(4,8,11)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12), (5,6,7,8)(9,10,11,12), (1,2,3,4)(5,7)(6,8)(9,10,11,12), (1,7,12)(2,6,9)(3,5,10)(4,8,11) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12)], [(5,6,7,8),(9,10,11,12)], [(1,2,3,4),(5,7),(6,8),(9,10,11,12)], [(1,7,12),(2,6,9),(3,5,10),(4,8,11)]])
G:=TransitiveGroup(12,55);
(1 7)(2 8)(3 6)(4 5)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 6 7 3)(2 5 8 4)(9 14 11 16)(10 15 12 13)(17 21)(18 22)(19 23)(20 24)
(1 21 10)(2 19 14)(3 20 9)(4 22 13)(5 24 15)(6 18 11)(7 23 12)(8 17 16)
G:=sub<Sym(24)| (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6,7,3)(2,5,8,4)(9,14,11,16)(10,15,12,13)(17,21)(18,22)(19,23)(20,24), (1,21,10)(2,19,14)(3,20,9)(4,22,13)(5,24,15)(6,18,11)(7,23,12)(8,17,16)>;
G:=Group( (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6,7,3)(2,5,8,4)(9,14,11,16)(10,15,12,13)(17,21)(18,22)(19,23)(20,24), (1,21,10)(2,19,14)(3,20,9)(4,22,13)(5,24,15)(6,18,11)(7,23,12)(8,17,16) );
G=PermutationGroup([[(1,7),(2,8),(3,6),(4,5),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,6,7,3),(2,5,8,4),(9,14,11,16),(10,15,12,13),(17,21),(18,22),(19,23),(20,24)], [(1,21,10),(2,19,14),(3,20,9),(4,22,13),(5,24,15),(6,18,11),(7,23,12),(8,17,16)]])
G:=TransitiveGroup(24,173);
(1 5)(2 6)(3 7)(4 8)(9 14)(10 15)(11 16)(12 13)(17 24)(18 21)(19 22)(20 23)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4 2 3)(5 8 6 7)(9 12 11 10)(13 16 15 14)
(1 19 15)(2 17 13)(3 18 14)(4 20 16)(5 22 10)(6 24 12)(7 21 9)(8 23 11)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,14)(10,15)(11,16)(12,13)(17,24)(18,21)(19,22)(20,23), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,2,3)(5,8,6,7)(9,12,11,10)(13,16,15,14), (1,19,15)(2,17,13)(3,18,14)(4,20,16)(5,22,10)(6,24,12)(7,21,9)(8,23,11)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,14)(10,15)(11,16)(12,13)(17,24)(18,21)(19,22)(20,23), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,2,3)(5,8,6,7)(9,12,11,10)(13,16,15,14), (1,19,15)(2,17,13)(3,18,14)(4,20,16)(5,22,10)(6,24,12)(7,21,9)(8,23,11) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,14),(10,15),(11,16),(12,13),(17,24),(18,21),(19,22),(20,23)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4,2,3),(5,8,6,7),(9,12,11,10),(13,16,15,14)], [(1,19,15),(2,17,13),(3,18,14),(4,20,16),(5,22,10),(6,24,12),(7,21,9),(8,23,11)]])
G:=TransitiveGroup(24,174);
(1 2)(3 4)(5 6)(7 8)(9 24)(10 21)(11 22)(12 23)(13 17)(14 18)(15 19)(16 20)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8 3 6)(2 7 4 5)(9 21 11 23)(10 22 12 24)(13 19)(14 20)(15 17)(16 18)
(1 17 11)(2 13 22)(3 19 9)(4 15 24)(5 18 21)(6 14 10)(7 20 23)(8 16 12)
G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,24)(10,21)(11,22)(12,23)(13,17)(14,18)(15,19)(16,20), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,3,6)(2,7,4,5)(9,21,11,23)(10,22,12,24)(13,19)(14,20)(15,17)(16,18), (1,17,11)(2,13,22)(3,19,9)(4,15,24)(5,18,21)(6,14,10)(7,20,23)(8,16,12)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,24)(10,21)(11,22)(12,23)(13,17)(14,18)(15,19)(16,20), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,3,6)(2,7,4,5)(9,21,11,23)(10,22,12,24)(13,19)(14,20)(15,17)(16,18), (1,17,11)(2,13,22)(3,19,9)(4,15,24)(5,18,21)(6,14,10)(7,20,23)(8,16,12) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,24),(10,21),(11,22),(12,23),(13,17),(14,18),(15,19),(16,20)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8,3,6),(2,7,4,5),(9,21,11,23),(10,22,12,24),(13,19),(14,20),(15,17),(16,18)], [(1,17,11),(2,13,22),(3,19,9),(4,15,24),(5,18,21),(6,14,10),(7,20,23),(8,16,12)]])
G:=TransitiveGroup(24,175);
C2×C42⋊C3 is a maximal subgroup of
C23.9S4 C42⋊C12 C42⋊2C12
C2×C42⋊C3 is a maximal quotient of C42⋊4C4⋊C3
action | f(x) | Disc(f) |
---|---|---|
12T55 | x12-38x10+538x8-3458x6+9659x4-8788x2+169 | 224·312·712·1314·2234 |
Matrix representation of C2×C42⋊C3 ►in GL3(𝔽5) generated by
4 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
2 | 1 | 3 |
3 | 0 | 1 |
0 | 0 | 3 |
0 | 4 | 0 |
4 | 1 | 4 |
1 | 2 | 0 |
1 | 4 | 1 |
0 | 3 | 4 |
0 | 3 | 1 |
G:=sub<GL(3,GF(5))| [4,0,0,0,4,0,0,0,4],[2,3,0,1,0,0,3,1,3],[0,4,1,4,1,2,0,4,0],[1,0,0,4,3,3,1,4,1] >;
C2×C42⋊C3 in GAP, Magma, Sage, TeX
C_2\times C_4^2\rtimes C_3
% in TeX
G:=Group("C2xC4^2:C3");
// GroupNames label
G:=SmallGroup(96,68);
// by ID
G=gap.SmallGroup(96,68);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-2,2,116,230,801,69,730,1307]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^4=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations
Export
Subgroup lattice of C2×C42⋊C3 in TeX
Character table of C2×C42⋊C3 in TeX